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ABSTRACT
We propose a new generalized thresholding algorithm use-
ful for inverse problems with sparsity constraints. The algo-
rithm uses a thresholding function with a parameter p, first
mentioned in [1]. When p = 1, the thresholding function is
equivalent to classical soft thresholding. For values of p below
1, the thresholding penalizes small coefficients over a wider
range and applies less bias to the larger coefficients, much like
hard thresholding but without discontinuities. The functional
that the new thresholding minimizes is non-convex for p < 1.
We state an algorithm similar to the Iterative Soft Threshold-
ing Algorithm (ISTA) [2]. We show that the new thresholding
performs better in numerical examples than soft thresholding.

Index Terms— inverse problems, sparsity, thresholding,
compressive sensing, image denoising

1. INTRODUCTION

Many applications involve at some stage, a linear inverse
problem Āx̄ = b̄ with Ā ∈ Rm×N and b̄ ∈ Rm. When
m < N , the system is underdetermined and there are in-
finitely many solutions. In addition, the matrix Ā and/or the
vector b̄ may be unavailable, instead we are given the noisy
versions A and b. We then replace the system Āx̄ = b̄ by
the least squares problem minx ‖Ax − b‖2. Again, when the
system is underdetermined, the least squares problem has
many solutions. Thus, additional constraints must be imposed
to make the problem well posed. The classical constraint
is on the `2 norm of the solution, resulting in the quadratic
minimization problem minx ‖Ax−b‖22+λ‖x‖22. Many appli-
cations, however, lend themselves to sparse solutions. Spar-
sity means having few nonzero coefficients with respect to a
given basis. The `2 constraint does not give sparse solutions.
Instead, we must use a different constraint. The measure of
nonzeros, ‖ · ‖0, is not a norm, highly non-convex, and diffi-
cult to deal with numerically. For these reasons, other penalty
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functions have been proposed. Among them, the closest con-
vex norm to the `0 penalty is the `1 norm: ‖x‖1 =

∑N
k=1 |xk|.

In many cases, this constraint gives sparse solutions [3, 4].
This reasoning motivates the minimization of the convex

but non-smooth `1 functional ‖Ax− b‖22 + 2τ‖x‖1. The non-
smoothness makes minimizing this functional computation-
ally challenging. For large-scale problems, methods that re-
quire a linear system to be solved at every iteration become
infeasible. One approach that avoids this problem is the Iter-
ative Soft-Thresholding Algorithm (ISTA) [2]. Each iteration
of this algorithm is computationally efficient, while the iter-
ates are guaranteed to converge.

In this paper, we consider more general penalty functions
than the `1 norm, motivated by many previous results show-
ing that nonconvex minimization gives much better perfor-
mance for compressive sensing [5, 6, 7] and image restora-
tion [8]. We propose generalizations of ISTA, using modified
thresholding functions that minimize non-convex functions.
In the next section, we define the thresholding functions and
the penalty functions that they minimize. In Sec. 3, we de-
scribe the corresponding algorithms, and present its theoreti-
cal properties. In Sec. 4, we present numerical results showing
the improved performance of the new algorithms.

2. THRESHOLDING FUNCTIONS

The well known soft thresholding operator is defined as:

Sτ (x) =


x− τ if x ≥ τ
0 if − τ ≤ x ≤ τ
x+ τ if x ≤ −τ

with the operation applied component-wise to each entry of a
vector. The operation can be written as:

(Sτ (x))k = sgn(xk) max{0, |xk| − τ}

The connection to the `1 minimization problem is that the
functional ‖Ax − b‖22 + 2τ‖x‖1 can be minimized using the



Fig. 1. Plot of p-thresholding function for a few values of p.
Smaller values of p shrink more values to zero, while shrink-
ing large values less.

simple iterative scheme ISTA:

xn+1 = Sτ
(
xn +AT b−ATAxn

)
(1)

for any initial guess x0 as long as the spectral norm ‖A‖2 < 1.
In this paper, we use the generalized thresholding operator
defined via:

(Rτ,p(x))k = sgn(xk) max{0, |xk| − τ |xk|p−1} (2)

Examples are plotted in Fig. 1. We observe that the new
thresholding penalizes small coefficients more as the value
of p is reduced. Additionally, the new thresholding function
with p < 1 applies less bias to the large coefficients.

We now briefly discuss how the new thresholding function
arises. We recall the following property of soft thresholding:

Sτ (t) = arg min
s

(s− t)2 + 2τ |s|.

This property gives rise to the following Huber function:

Lemma 2.1. The minimum value of 1
2τ (s− t)2 + |s| is:

hτ (t) =

{
t2

2τ if |t| ≤ τ
|t| − τ

2 if |t| > τ.

Now we generalize the above to the following function:

h̄τ,p(t) =

{
t2

2τ if |t| ≤ τ
1

2−p

|t|p
p − σ if |t| > τ

1
2−p .

Notice that when p = 1, we have that h̄τ,1(b) = hτ (b). When
p = 0, we interpret |t|p/p to mean log |t|. We choose σ to
make h̄ continuous, with the result that h̄ ∈ C1.

We now make use of the Legendre-Fenchel transform
given by:

f∗(y) = max
x
〈x, y〉 − f(x). (3)

Fig. 2. Plot of gτ,p for τ = 0.1 and a few values of p.

We introduce the function gτ,p defined by:

|s|2

2
+ τgτ,p(s) =

(
| · |2

2
− τhτ,p(·)

)∗
(s) (4)

and arrive at the following property of the new thresholding
function:

Lemma 2.2. The thresholding functionRτ,p satisfies the min-
imization problem:

Rτ,p(b) = arg min
x

(x− b)2 + 2τgτ,p(x)

We note that the minimizer in Lemma 2.2 is unique. In-
deed, simple manipulation shows the argmin of (2.2) is the
argmax of (3) with f = ϕ∗ where ϕ(t) = |t|2

2 − τhτ,p(t) is
the function used to define g in (4). By [9, Prop. 11.3], this
argmax is the same set as ∂ϕ(y), which is a singleton because
ϕ ∈ C1.

It is only possible to compute gτ,p(t) explicitly for spe-
cial values of p (like p = 1/2, where it amounts to solving
a cubic equation). However, our algorithm will not require
computing gτ,p(t), it will only require finding the minimizer
of expressions of the form (2.2). And this, by design, is done
using the simple p-thresholding function. Fig. 2 shows numer-
ically computed plots of gτ,p for a few values of p. It grows
like |t|p/p for large |t|, in particular being bounded above for
p < 0. Near t = 0, the graphs have a sharp corner, but not a
vertical tangent like |t|p does.

3. THE GENERALIZED THRESHOLDING
ALGORITHM

Following the development of ISTA, we define the following
algorithm using the generalized thresholding function Rτ,p:

xn+1 = Rτ,p
(
xn +AT b−ATAxn

)
(5)

Like ISTA, the algorithm can be used from any initial point x0

as long as ‖A‖2 < 1 (which can be accomplished by rescaling
by the largest singular value of A). We assume this is true
henceforth.



Proposition 3.1. Any fixed point of (5) is a local minimizer
of the functional

F (x) = ‖Ax− b‖22 + 2τGτ,p(x), (6)

where Gτ,p(x) =
∑N
k=1 gτ,p(xk).

We omit the proof for lack of space, but the main fact is
that although Gτ,p is nonconvex, it is subdifferentially regu-
lar, so that first-order optimality conditions are sufficient for
a point to be a local minimizer (see [9, Thm. 10.1]).

Many properties of the algorithm follow from standard
results of majorization-minimization (MM) algorithms [10].
Such algorithms require a function M such that for all x and
y, F (x) = M(x, x) and F (x) ≤ M(x, y). Then one sets
xn+1 = arg minxM(x, xn). One immediately obtains that
F (xn+1) ≤ F (xn). We obtain the algorithm (5) from

M(x, y) = ‖Ax−b‖22−‖A(x−y)‖22+‖x−y‖22+2τGτ,p(x).

This construction allows us to prove useful properties of
the algorithm:

Lemma 3.2. The iterates (xn) satisfy ‖xn+1 − xn‖2 → 0.
Also, for p > 0 we have that ‖xn‖2 is bounded.

Proof. The first claim follows just as in the case of ISTA;
see [2]. The second follows from the fact that F (xn) is non-
increasing, and that Gτ,p (and hence F ) is coercive when
p > 0.

Next we show that the limit points of all converging sub-
sequences of (xn) are local minimizers:

Lemma 3.3. Every convergent subsequence of (xn) con-
verges to a local minimizer of F (x).

Note that by Lemma 3.2, the set of convergent subse-
quences is nonempty.

Proof. By Proposition 3.1, we need only show that the limit
of a convergent subsequence is a fixed point. Take any con-
vergent subsequence xnj → x̄. By Lemma 3.2, we have that
xnj+1 → x̄ also. By continuity of the thresholding Rτ,p,

x̄ = limxnj+1 = limRτ,p(x
nj +AT b−ATAxnj )

= Rτ,p(x̄+AT b−ATAx̄).
(7)

Thus x̄ is a fixed point of (5).

This leads us to our main theorem.

Theorem 3.4. Let p > 0. Then the algorithm (5) is globally
convergent to a local minimizer of F .

We do not have space to present the proof. The main tool
is a result of Meyer [11] that establishes that for the algo-
rithm not to be globally convergent implies that the set of

limit points forms a continuum. The proof proceeds by show-
ing that having first-order optimality conditions holding on a
continuum implies third-order properties of gτ,p that are false.

We also note that while our proof of convergence only
holds for p > 0, in practice the algorithm converges quite
well when p < 0, with this case often producing the best
numerical results.

Our algorithm follows:

Algorithm 1: p-Shrinkage Algorithm

Input : An m×N matrix A, initial guess x0 ∈ RN ,
regularization parameter τ < ‖AT b‖2−p∞ ,
tolerance β, maximum number of iterations
M , and shrinkage parameter p ∈ R.

Output: A sparse vector x̄ with ‖Ax̄− b‖2 small.

for n = 0, 1, . . . ,M do
xn+1 = Rτ,p(x

n +AT b−ATAxn);
if ‖xn − xn+1‖2 ≤ β then

break
end

end
x̄ = xn+1;

4. NUMERICAL RESULTS

We have found that the p-thresholding scheme performs better
than soft thresholding in many applications, with similar com-
putation time. Below, we illustrate examples in compressive
sensing (CS) and wavelet denoising. For CS, we have a (vec-
torized) sparse image x that we do not have access to. Instead
we have access to measurements y of the image obtained with
a random, normally distributed, underdetermined sensing ma-
trixA, subject to some noise. That is, y = Ax+ν and we seek
to recover x by minimizing ||Ax−y||22 +2τGp,τ (x). We find
that when p-thresholding with p < 1 is used, fewer measure-
ments are needed for sparse recovery than with the ISTA case
of p = 1, or with the same number of measurements, better
quality is obtained with p < 1.

In Fig. 3 we see results of examples using p = 1/4. In
each case, our Gaussian A was scaled to have ‖A‖2 = 10/11
(as convergence requires this be less than 1). The noise ν has
norm 10% of the norm of y. The first example shows recon-
struction results for 2,744 measurements of an image with
5,025 pixels, of which 686 are nonzero. Using ISTA, the re-
construction SNR is 6.51 dB, while with our p-ISTA obtains
9.50 dB. The second example uses 1,145 measurements of a
4,662-pixel image with 229 nonzero pixels. The ISTA recon-
struction has an SNR of 5.98 dB, while p-ISTA gives us 9.94
dB. Thus in each case we obtain a 3 dB improvement using
our p-thresholding.



Fig. 3. Reconstructions with ISTA (left) and p-ISTA (right)
with the same numbers of measurements, where p = 1/4.

Now we consider image denoising. In this example, we
start with a 9,216-pixel satellite image, and then retain the
largest 5% of the Daubechies-3 wavelet transform coefficients
to construct our image x. We then obtain y = x+ν by adding
Gaussian noise of norm 60% of the norm of x, giving an SNR
of 1.38 dB. We minimize ||W−1w−y||22+2τGp,τ (w), where
W is the db-3 wavelet transform. We find the minimizing w̄
and construct W−1w̄ as the denoised image. Using ISTA, the
reconstruction SNR is 6.27 dB, while using p-ISTA with p =
3/4 we obtain 8.60 dB, a significant improvement.

Another advantage of the new thresholding is that the p-
ISTA algorithm can be run with a higher parameter τ than
ISTA. This is advantageous since thresholding methods tend
to be slow at small τ . Based on the first-order optimality con-
ditions, it is straightforward to show the following:

Lemma 4.1. For any p ∈ R, x = 0 is a local minimizer of
(6) iff τ ≥ ‖AT b‖2−p∞ .

Thus, when p < 1, greater values of τ can be used to yield
non-zero solutions than when p = 1.

Consider sparse vectors x ∈ R1500 with numbers of
nonzeros in {75, 150, . . . , 900} . In each case, we use the
same 1000 × 1500 matrix A (constructed as before) to con-
struct the right hand side b = Ax+ ν, with ‖ν‖2 = 0.1‖b‖2,
and perform the inversion with ISTA and p-ISTA (p = 0.65)
to find the xτ such that ‖Axτ − b‖2 ≈ ‖ν‖2. We loop over
different values of τ , computing at each step the solution and
the residual value. Once we have found the τ which leads to
this noise matching residual level for each scheme, we run
the algorithms until convergence: ‖xn − xn−1‖2 < 10−5

and plot the number of iterations in Fig. 5. (The computation
time per iteration was nearly the same for both methods.)
We see that in some cases, p-ISTA takes somewhat longer
to converge. We also tried incorporating the acceleration

Fig. 4. Top: original and noisy images. Bottom: denoised im-
ages with ISTA (left) and p-ISTA (right).

Fig. 5. Number of iterations until convergence criterion for
increasing numbers of nonzeros in x.

scheme of [12], which when applied to ISTA is known as
FISTA. In this version, the thresholding is performed with
xn replaced by a linear combination yn of two previous so-
lutions, yn = xn + ((tn − 1)/tn+1)(xn − xn−1), where
tn+1 = (1 +

√
1 + 4t2n)/2. This acceleration scheme is de-

signed specifically for convex minimization, but as a heuris-
tic it gives much faster convergence using p-thresholding as
well. We will undertake to derive an acceleration approach
designed for our p-thresholding in future work.

5. RELATION TO PRIOR WORK

We presented a new generalized thresholding algorithm
which uses a p-thresholding function, which reduces to soft
thresholding when p = 1. For p < 1, the new thresholding
function penalizes small coefficients more than soft thresh-
olding, while applying less bias to the large coefficients.
Our iterative p-thresholding algorithm has, in many cases,
improved reconstruction performance compared with ISTA
[2].
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